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Community Climate System Model

Atmosphere
(NCAR)

Land Surface
(NCAR)

A\' Sea Ice

(LANL)

N

POP (LANL)

CCS-2 Ocean Modelers:

Sumner Dean Balu Nadiga
Scott Elliot Mark Petersen
Matthew Hecht Wilbert Weijer
Bob Malone Beth Wingate

Other ocean and sea ice
modelers are in T-3 and EES



Parallel Ocean Program (POP)

« Solves conservation equations at each grid-point and time-step:
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POP: 0.1° resolution, speed
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IPCC - Intergovernmental Panel
on Climate Change

» Created in 1988 by

* World Meteorological Organization (WMO)
e United Nations Environment Programme (UNEP)

* Role of IPCC: document the scientific consensus of:
e the scientific basis of risk of human-induced climate change
e its potential impacts and

Climate Change 2001

e options for adaptation and mitigation. il

§ CLIMATE CHANGE 2001

_ - S " CLIMATE CHANGE 2001
» Main activity: Assessment reports S ) ot
 Third Assessment Report: 2001 e '

e Fourth Assessment Report: 2007




Climate Change 2001

The Scientific Basis
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IPCC scenarios of future emissions

A: slower conversion to
clean & efficient
technologies

B: faster conversion
to clean & efficient
technologies

1: global population levels
off, declines after 2050

A1FI: fossil intensive

A1T: non-fossil intensive B1
A1B: balance of F&T
2: continuously increasing A2 B2

population

1IS92a: business as usual (extrapolation from current rates of increase)
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scenarios

CO, emissions

CO, concentration
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Ensemble mean: Regional temperature changes

central US: 7
5°C (9°F)

scenario A2
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color shading: ensemble mean blue lines: range of

change of temperature,
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temperature change
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TAR
p.545



IPCC 2001: Estimates of confidence

Table 4: Estimates of confidence in observed and projected changes in extreme weather and climate events. The table depicts an assessment of
confidence in observed changes in extremes of weather and climate during the latter half of the 20th century (left column) and in projected
changes during the 21st century (right column)®. This assessment relies on observational and modelling studies, as well as physical plausibility of
future projections across all commonly used scenarios and is based on expert judgement (see Footnote 4). [Based upon Table 9.6]

Confidence in observed
changes (latter half of the 20th
century)

Changes in Phenomenon

Confidence in projected changes
(during the 21st century)

Likely

Very likely

Very likely
Likely, over many areas

Likely, over many Northern
Hemisphere mid- to high latitude
land areas

Likely, in a few areas

Not observed in the few analyses
available

Insufficient data for assessment

Higher maximum temperatures
and more hot days over nearly all
land areas

Higher minimum temperatures,
fewer cold days and frost days
over nearly all land areas

Reduced diurnal temperature
range over most land areas

Increase of heat index® over land
areas

More intense precipitation
events®

Increased summer continental
drying and associated risk of
drought

Increase in tropical cyclone peak
wind intensities®

Increase in tropical cyclone mean
and peak precipitation intensities®

Very likely

Very likely

Very likely

Very likely, over most areas
Very likely, over many areas
Likely, over most mid-latitude

continental interiors (Lack of consistent
projections in other areas)

Likely, over some areas

Likely, over some areas

& For more details see Chapter 2 (observations) and Chapters 9, 10 (projections).
b For other areas there are either insufficient data of conflicting analyses.
¢ Past and future changes in tropical cyclone location and frequency are uncertain.

& Heat index: A combination of temperature and humidity that measures effects on human comfort

TAR
p.82
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Parallel Ocean Program (POP)
Resolution is costly, but critical to the physics

Climate simulations
* low resolution: 1 deg (100 km)
* long duration: 100s of years
» fully coupled to atmosphere, etc.
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Satellite observation of
sea surface temperature




What do you get with higher resolution?

Small-scale turbulence and eddies
transport energy and heat.

64°5

Reynolds decomposition:

og 7 /
/u — Lé B perturbation

total time average

cost of doubling
horizontal grid
is factor of 10

64°S

These become more realistic
with higher resolution:

64°5

« eddy heat transport: v7T"

» eddy kinetic energy: %(u'2 v )

0°E 10°E 20°E

60°S —

» feedback of small-scale features on the large-
scale mean flow - important for oceanic jets

« vertical temperature profile

68°S




Sub-grid scale turbulence model: LANS-alpha model
Developed by Darryl D. Holm (CCS-2) and colleagues in 1990s
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The test problem:
Idealization of Antarctic Circumpolar Current

lfz N &“’ solid boundary =
¢ surface 12°C S
.\06\0 t_hermal | zonal wind > 6\00
Qe\ forcing solid boundary Qé\o
deep-sea ridge
Cooling Zonal Wind Warming
ﬁ 22 Baroclinic Instability:
R F——re— N 1.Eastward zonal wind causes northward
L L Ekman transport
RN N “\~i---ﬁ__4,/2.CircuIation tilts isotherms (lines of
L % 1 constant temperature)
t 1 S tfﬂfgpm;:“‘;l 3.Potential energy of baroclinic instability
s 1 converted to kinetic energy.
Lo ] 4.Small scale turbulence (eddies)
H mean flow transport heat and kinetic energy

Thermocline depth is determined by the eddy transport quantities.



POP-alpha Results
Mark Petersen, Matthew Hecht, Darryl D. Holm, & Beth Wingate (CCS-2)

POP-alpha statistics are like higher resolution runs with standard POP in:

= vertical temperature profiles
» eddy kinetic energy
= kinetic energy

m
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POP-alpha Results
Mark Petersen, Matthew Hecht, Darryl D. Holm, & Beth Wingate (CCS-2)

POP-alpha statistics are like higher resolution runs with standard POP in:

= vertical temperature profiles
» eddy kinetic energy
= kinetic energy
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Overflow regions in the North Atlantic

Change in Atlantic
overturning circulation in
IPCC models.

Total circulation is
10 to 30 Sv
(1 Sv =108m3/s)
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How do we study ocean overflows?

» Observations - shipboard, buoys, and autonomous floats
» L aboratory experiments
» Direct numerical simulation (DNS)

= Realistic numerical simulations
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How do we study ocean overflows?
= Laboratory experiments
Jun Chen, Philippe Odier, Mike Rivera, Bob Ecke (CNLS, MST-10)

e Velocity measurement: Particle Image Velocimetry (PIV).
e Density measurement: Planar Laser Induced Fluorescence (PLIF).
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How do we study ocean overflows?

» Direct numerical simulation (DNS)
Daniel Livescu, CCS-2

e Fully resolve all the relevant time and length scales.
e No artificial dissipation or subgrid models.
e Highly accurate numerical methods

Model Domain Slip

Inflow ||

Outflow

NG




How do we study ocean overflows?
= Realistic numerical simulations

4 km horizontal grid, dam-break initial conditions

Denmark Strait

' Greenland Iceland
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Summary

= Higher resolution can solve all of your problems.

* You can’t possibly have high enough resolution to
solve your problems.

= \We have to make the best of the resolution we have:
o Mathematically based sub-grid scale parameterizations
» Always verify with observations and experiments
= We can'’t possibly resolve the physics at or below the grid-scale
= \We can hope to capture the effects of the sub-grid scale on the
larger scales, like:

e Global circulation and heat transport
e Location of jets (Gulf Stream)
e Properties of water masses (Temperature and Salinity)



